Improved Blood Pressure Control and Lessons Learned from Pilot Projects to Implement Home Self-monitoring of Blood Pressure

Emily Piercefield, MD, MPH^{1,2}; Debra Hodges, PhD¹; Melanie Rightmyer, DNP¹; Sondra Reese, MPH¹

1. Alabama Department of Public Health, Bureau of Health Promotion and Chronic Disease

2. CDC, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health

BACKGROUND

- Approximately 30% of U.S. adults have high blood pressure (BP)*
 - Half of people with high BP do not have BP well-controlled - Nearly 40% with uncontrolled BP are unaware BP is elevated
- Even modest elevation of BP increases risk of heart disease and stroke
- Two pilot projects on home self-monitoring of BP were initiated in
- Alabama to improve BP control among participants

METHODS

- Adults in community-based coalitions (CC, n=39) or a rural county health department (HD, n=18)
 - Provided automated, upper arm home BP monitor with instruction in use
 - Reported BP readings to health mentors weekly over 2–7 months
 - Included participants with at least 6 recorded BP observations
- Absolute and % change in mean systolic BP (sBP) calculated from first 3 to last 3 recorded BPs
- HD participants gueried to describe whether they continued to monitor BP after the pilot period and what factors they found affected BP readings

Participant	Characteristics
-------------	-----------------

Characteristic	CC <i>,</i> N=39	HD, N=18
Female	58.3%	66.7%
Age (mean years)	61.6 (range 35–86)	52.8 (range 27–70)
African-American	62.5%	100%
Participation (mean days)	104.2 (range 33–222)	81.6 (range 51–124)

LESSONS LEARNED

- Recommend BP monitor be validated, with adjustable cuff size, reading memory and long battery life
- Some participants may have privacy concerns about sharing BP readings
- Higher frequency of monitoring associated with greater improvements in BP control; possibly related to more real-time feedback with recent health behaviors to identify triggers
- Unmeasured benefit of weekly participant telephone contact and informal coaching by lay health mentors which anecdotally improved compliance and perceived benefit

CONCLUSIONS

- Home BP monitoring significantly reduced mean sBP, particularly among participants with initial sBP ≥140 mm Hg
- A majority of participants with initial mean sBP \geq 140 reduced final mean sBP to <140 (47% CC, 86% HD)
- Participants were able to identify modifiable triggers of BP elevation and most continued home BP monitoring
- Higher frequency of BP checks and regular health mentoring may contribute to better BP control
- Lessons learned from the pilot projects are being implemented at other sites in ongoing efforts for improved BP control through home monitoring
- Self-monitoring of BP can improve BP control and potentially reduce risk of hypertension-related health complications

*MMWR, 2012: vol. 61(35); 703-708

Alabama Department of Public Health

Bureau of Health Promotion and Chronic Disease

Change in	Blood	Pre

RESULTS

Co	ntro	lled I	BP		

- Aware uncontrolled
- Unaware uncontrolled

	СС		HD	
Blood pressure (mm Hg)	All N=39	Initial mean sBP≥140 N=17	All N=18	Initial mean sBP≥140 N=7
Number of BP observations	9.5	9.5	26.9	48.0
Initial mean sBP	137.8	152.3	135.8	146.9
Final mean sBP	131.7	140.7	129.1	129.9
Mean change in sBP	- 6.1	- 11.6	- 6.7	- 17.0
Mean % change in sBP	- 3.9%	- 7.3%	- 4.6%	- 11.7%
Paired 2-tailed T test p-value	0.001	0.001	0.023	0.001

Post-Intervention Questionnaire

Characteristic	N=10/18=55.6%	Questi
Female	50%	Continu
Age (median years)	55.0 (range 27–70)	Better ເ what ra
African-American	100%	Shared
Education (median years)	12 (range 12–16)	Shared neighbo

Factors listed as observed triggers for increased BP:

Alcohol, medication side effects, medication non adherence, anxiety, stress, and dietary factors including sodium intake, fried foods, and pork

vw.cdc.gov | Contact CDC at: 1-800-CDC-INFO or www.cdc.gov/info The findings and conclusions in this report are those of the authors and do not nece

High Blood Pressure

essure with Home Self-Monitoring, Alabama, 2013–2014

	Yes
taking BP?	80%
erstanding of s your BP?	100%
o with doctor?	80%
h family, friends, ?	50%