Evaluation of the Alaska Lead Surveillance Program

Jonathan Bressler, MPH1,2, Sandrine E. Deglin, PhD1, Stacey Cooper, MS1, Ali Hamade, PhD1

1Alaska Department of Health and Social Services, Division of Public Health, Section of Epidemiology, Environmental Public Health Program

2CDC/CSTE Applied Epidemiology Fellowship Program

BACKGROUND
- Since 1995, the Environmental Public Health Program (EPHP) has collected all blood lead test results for Alaskans. Results must be reported by law.1
- Blood lead testing is conducted by providers, Public Health Nursing, some employers, and other entities.
- EPHP follows up with patients who have elevated blood lead levels (eBLLs) to identify exposures, educate patients, and help with the medical management of patients.
- According to CDC, as of December 2015, an eBLL for people of all ages is at or above 5 µg/dL.2 Due to staffing constraints, EPHP only conducts follow-up for the following:
 - ≥25 µg/dL in children ≤18 years old,
 - ≥25 µg/dL in non-occupationally tested adults ≥18,
 - ≥40 µg/dL in occupationally tested adults ≥18.
- Employers in some industries, such as mining, must provide testing for employees at least every 6 months.3 Head Start programs must screen for participating children at 2 and 24 months.4 No regular screening in the state are screened systematically for lead.
- EPHP is considering moving its lead database from MS Access to SQL to link it with other registries.

DATA PROCESS
- Assess the effectiveness of the Lead Surveillance Program in identifying and managing Alaskans with eBLLs.
- Make recommendations for improving program.

METHODS
- The 2001 CDC Updated Guidelines for Evaluating Public Health Surveillance Systems4 were used to assess the efficiencies and limitations of the Alaska Lead Surveillance Program.
- Program attributes were assessed for their strengths and limitations through stakeholder and expert interviews.

OBJECTIVE
- Identify eBLLs and common sources of lead exposure.
- Provide needed information for prevention and public health advisories.
- Due to low screening, the program cannot accurately estimate the extent of lead-associated morbidity, and might not detect changes in disease patterns among some groups.
- Reporting is simple.
- Staff can easily contact patients with eBLLs.
- Manual data entry adds to system complexity.
- Program and testing methods easily adjust to changes in definitions.
- Low funding requirements.
- Data incomplete for many test results (Table).
- Many non-elevated reports not yet entered.
- Manual data entry raises potential for errors.
- Gaps in institutional knowledge inhibit data cleaning for past years.
- Software changes could negatively affect data quality.
- Tests are reported within the time required by law.
- Follow-up on eBLLs is initiated within two business days of report.
- Data entry of eBLLs are completed the day of report.
- System always operational during business hours.

RESULTS

Strengths
- Programs are very likely to identify eBLLs among occupationally exposed adults and children in Head Start programs.
- Database is incomplete for non-elevated levels.
- Manual data entry is inefficient.
- No regular data cleaning makes analysis and summary reporting time-consuming.
- System 100% operational during business hours.

Limitations
- Some blood collection materials are difficult to use, especially with children.
- No regular lead surveillance or lack of contact with pediatric health care providers.
- Software changes may impede such efforts.
- Conduct outreach with underrepresented groups and health care providers.
- Work with partners to increase awareness of lead.
- Staff contact funding would further limit system capacity.

Sensitivity & Positive Predictive Value
- Quantitative sensitivity is unknown since population eBLL prevalence in Alaska is unknown and database is incomplete for non-elevated BLLs.
- Positive predictive value is high since lab instruments have high accuracy and reporting of results is high.
- Contamination or low volume could cause false positive results and reduce positive predictive value. Though not quantifiable, the extent of these issues is likely to be low.

REFERENCES
1. 7 AAC 27.014. Reporting of blood lead test results.

ACKNOWLEDGEMENTS

David Verbrugge – Alaska Public Health Laboratory
Charles Utermohle – Alaska DHSS

Contact:
Jonathan Bressler – CDC/CSTE Applied Epidemiology Fellow
 jonathan.bressler@alaska.gov

This study/report was supported in part by an appointment to the CSTE Applied Epidemiology Fellowship Program administered by the Council of State and Territorial Epidemiologists (CSTE) and funded by the Centers for Disease Control and Prevention (CDC) Cooperative Agreement Number 1U38OT000143-03.