

MOTIVATION

- The New York City (NYC) population includes many travelers and recent immigrants and is at risk for travel-associated communicable diseases, including Zika virus (ZIKV) disease
- Infected persons who acquire ZIKV while traveling and are viremic in NYC might be bitten by *Aedes albopictus* vectors, introducing an unknown but presumably low risk of local transmission
- Throughout the 2016 mosquito season, we sought to identify areas with persons with ZIKV viremia — locations where mosquitoes could become infected with ZIKV — to target public education and trapping and controlling *Aedes* spp. mosquitoes

TABLE 1. Considerations in analysis design

CHALLENGE	ANALYTIC
Reported ZIKV cases incomplete and spatially non-representative, because of asymptomatic infections and under-testing	Applied regression available data to e risk
Define at-risk areas at high geographic resolution to inform programmatic activities	Unit of analysis: c (N=2,123 with >2
Distribution of population at-risk (travelers to ZIKV-affected countries/territories) unknown	Used area-based a characteristics po with ZIKV importa
Areas at-risk change over time: changing incidence in ZIKV- affected countries/territories affects communities concentrated in different areas of NYC	Updated regression using latest availant testing and cases
Barriers to seeking care and receiving ZIKV testing in some areas	Fit model restriction with any recent te census tracts when observed cases at testing); for all centro outputted model- individual and cro probabilities of ar
Assessing model performance, i.e., discriminatory ability to predict census tracts with recent cases	Used receiving op characteristic (RO compare area und (AUC) for fitted m validation vs. inte

Identifying Areas at Greatest Risk for Recent Zika Virus Importation — New York City, 2016 Sharon K. Greene, PhD, MPH, Sungwoo Lim, DrPH, and Annie D. Fine, MD New York City Department of Health and Mental Hygiene

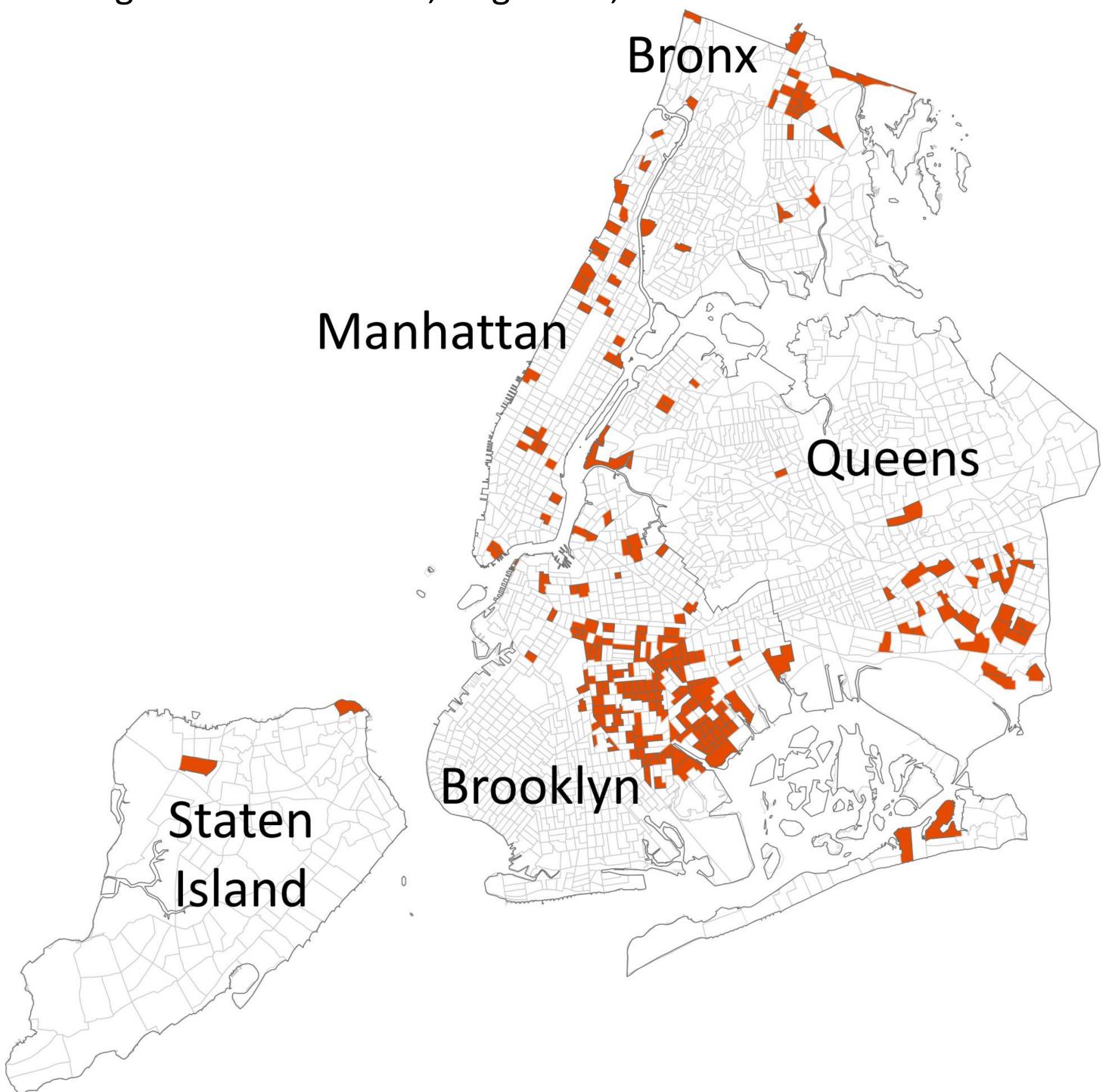
IC SOLUTION

on modeling to estimate areas at

census tract 25 residents)

sociodemographic otentially associated ation and testing

ion model weekly, able data on ZIKV


ting to census tracts testing (i.e., excluded ere having zero attributable to no ensus tracts, I-predicted oss-validated iny recent cases

perator OC) contrast test to nder the ROC curve nodel with crossercept-only model

TABLE 2. Variables used weekly in logistic regression model

DATA SOURCE	VARIABLE	Role in Model	
Communicable disease surveillance database, NYC Department of	Any ZIKV cases in prior month (Y/N)	Outcome variable	
	Any ZIKV tests in prior month (Y/N)	Restrict to "yes" for model fitting	
Health and	ZIKV cases >1 month ago		
Mental	Dengue and chikungunya cases		
Hygiene	since 2013 with travel to areas with		
	local ZIKV transmission		
American	% living below federal poverty level		
Community	Number with ancestry in areas with	Independent	
Survey, 2010–	local ZIKV transmission (quartile)	variables	
2014	Number born in areas with local		
	ZIKV transmission (quartile)		
	% Hispanic ethnicity		
Census 2010	% women of childbearing age		
	Total population size (quartile)		

FIGURE. Census tracts in highest decile of model-predicted probability of having had a recent case, August 23, 2016

- June–September 2016
- presence of recent cases

given week

- to any disease where cases are incompletely ascertained and knowledge of how cases are moment is important for

Questions? Suggestions? Interested in the SAS code? sgreene4@health.nyc.gov

RESULTS

• Model adequately discriminated between census tracts with and without recent cases for 8 of 14 weekly analyses,

• No independent variables were consistently associated with

• Illustrative results, August 23, 2016: • Of 752 census tracts with any recent testing, 105 (14%) had any observed recent ZIKV cases • Variables independently associated with census tractlevel presence of recent ZIKV cases: % women of childbearing age (P = 0.0007) No. with ancestry in areas with ZIKV transmission (P = 0.03) • % Hispanic ethnicity (P = 0.07) • AUC for fitted model with cross-validation: 0.66 ROC contrast test with intercept-only model (AUC=0.50): P < 0.0001• In a defined Brooklyn neighborhood of 33 census tracts,

3 had recent observed cases, but 23 were in the highest decile of modeled risk, suggesting expanding public health activities in this area might be warranted • Areas at highest risk varied over time; e.g., modelpredicted probabilities for June 29 vs. August 23: Spearman correlation coefficient: 0.59, *P* < 0.0001

CONCLUSIONS

• We used observable characteristics of areas with recent, known travel-associated ZIKV cases to identify similar areas with no observed cases that might also be at-risk in any

• Model performance would likely improve if census tractlevel data on persons arriving from ZIKV-affected countries were readily available to health departments

• These methods could be applied geographically distributed at any targeting public health activities

